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the specimen is composed of an effective medium of homogeneous properties inferred from the real heterogeneous
specimen and (2) the deformation remains homogeneous. With these additional assumptions, the inverse problem
is simplified such that only macroscopic responses from the experiment are utilized in the objective function [as
demonstrated previously in Liu et al. (2016)]. The target data for curve-fitting are the stress ratio s(σ1/σ3)

lab and
volumetric strainelab

v along the triaxial compression test. As a result, the objective function reads
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whereNσ1/σ3
andNev are the number of stress ratio data and volumetric strain data, respectively. Both data have 30

data points and the weights are equal to 1. The subscripti denotes theith data point. The unit cell and the boundary
conditions are presented in Fig. 7. The initial void ratio and the minimum void ratio are set to be 0.6, which is the
average value of the sample. Note that there is no micropolar effect in this single element example, thus the material
lengthl does not affect the macroscopic response. It is set to be equal to the element size 10 mm. The parameters to
be identified via Dakota areC1, C2, C3, C4, ec, anda.

The Dakota calibration procedure takes in total 92 evaluations, of which 72 evaluations are performed for deter-
mination of the gradient of the 6 material parameters, while the remaining 20 evaluations are making guesses based
on the gradients. To demonstrate the convergence of the material parameters, the trial material parameters and the cor-
responding values of the objective function are presented in Table 1. The macroscopic responses obtained by the trial
material parameters compared with the experimental data are shown in Fig. 8. Despite the large discrepancy between
the initial guess and the laboratory results,f(x) decreases rapidly: it is reduced by about 95.7% after 50 evaluations.
This example demonstrates the robustness of the NL2SOL scheme in Dakota for nonlinear models and least-squares
problems for which the residuals do not tend to vanish.

FIG. 7: Domain and boundary condition for single unit cell calibration

TABLE 1: Evolution of the material parameters during the Dakota calibration procedure

C1 C2 C3 C4 ec a f(x)
Initial guess −33.33 −104.61 −336.44 −105.90 0.800 0.900 143.77

Evaluation 20 −31.63 −62.44 −484.71 −107.15 0.650 0.905 97.60
Evaluation 50 −40.60 −1054.35 −1565.66 −138.86 0.651 0.923 6.18

Calibration result −63.14 −1831.49 −2563.92 −237.52 0.732 0.848 2.85
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FIG. 8: Macroscopic stress ratio(left) and volumetric strain(right) responses from selected value sets of material
parameters in unit cell calibration

5. MICROPOLAR HYPOPLASTIC MODEL CALIBRATION WITH MICRO-CT IMAGES FROM TRIAXIAL
COMPRESSION TEST

To analyze how the spatial variability of porosity (or relative density) affects the macroscopic responses, we recon-
struct a detailed 3D numerical specimen with the exact geometry and porosity distribution of the laboratory specimen
using the data extracted from micro-CT image analysis. The process of converting the micro-CT experimental data
into numerical specimen is illustrated in Fig. 9. After obtaining the images from the X-ray CT scan, the position and
effective diameter of each grain are recorded. Three micro-CT images taken at initial (0% axial strain), peak (6%
axial strain) and residual (15% axial strain) stages are used. The boundary particles are identified and thus the outer
boundary of the 3D specimen can be extrapolated from the position of these particles. Following this step, the domain
of the specimen is discertized by finite element and the void ratio of each finite element is calculated by established
the total solid volume using the positions and effective diameters of the particles, as shown in Fig. 9.

All micro-CT based finite element simulations are performed on the numerical specimen with identified initial
geometry and initial void ratio distribution. Here we adopt the hypothesis that the dominating factor that governs the
transition from compressive to dilatant behavior of granular materials is the relative density or porosity, the same
simplification used in Borja et al. (2013). As a result, the material parametersC1, C2, C3, C4, ec, a, andl are assumed
to be homogeneous within the specimen, while the spatial variation of the void ratio inferred from micro-CT image
of the initial configuration is incorporated to study the effect of the spatial variation of void ratio. Note that the results
of the inverse problem depend on how the boundary conditions are applied in model simulations. In this study, these
conditions are defined based on the experimental setup with assumptions and simplifications. For example, because
of the complexity of the interaction between the Hostun sand sample and the loading pistons of the triaxial cell, the
top and bottom surfaces of the specimen are not fully constrained, neither in terms of the transnational nor rotational
degrees of freedom (as shown in Fig. 4). In particular, we observed that the loading plates placed on the top of the
specimen has slid. In this study, the authors assume that the nodal displacements on the top surface of the specimen
are totally constrained, while the bottom surface is compressed under a constant strain rate in the Z direction and all
nodes at the bottom boundary have the same vertical displacement in the XY plane in order that the surface area does
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FIG. 9: Construction of the numerical sample and void ratio distribution from micro-CT experimental data at the
initial stage (0% axial strain) of the triaxial compression test

not change. This constraint is applied via the Lagrange multipliers. Meanwhile, the rotations on both surfaces are
prohibited. The lateral surface of the FEM model is under constant confining pressure of 100 kPa and is free to rotate,
neglecting the effect of the rubber membrane in the testing apparatus.

The Dakota calibration procedure of the material parameters is carried out for two inverse problems. In the first
problem (Case A), only the macroscopic responses serve as the constraints for material parameters. The second prob-
lem (Case B) takes into account, in additional to the macroscopic constitutive responses, the local void ratio developed
at the peak and residual stages, thus adopting information from micro-CT images as additional target. The weight of
the void ratio data in Case B is intentionally set larger than the macroscopic data such that the microstructural evolu-
tion can be compatible. These two extreme cases are studied to separate the influence of either macroscopic behavior
or meso-scale behavior on the parameter calibration. In the third numerical experiments, we introduce a new mul-
tiscale objective function that takes account of both macroscopic and meso-data in a more balanced way. We then
reuse the calibrated material parameter sets from Case A and Case B as the initial guesses for the restarted material
parameter identification procedure to study the sensitivity of the calibration procedure.

5.1 Case A: Results from Macroscopic Objective Function

The objective function for Case A is the same as Eq. (13), which only consists of macroscopic stress ratio and volu-
metric strain data. Both data types contain 30 data points, thus their weights are identical. Unlike elasto-plastic models
for granular materials, the micropolar hypoplastic constitive model does not separate elastic and plastic parameters.
Thus the material parameters are calibrated simultaneously, not in a stepwise manner (Ehlers and Scholz, 2007). The
initial guess of the material parameters and the calibrated results in Case A is presented in the Table 2. The macro-
scopic responses obtained by the parameter sets from initial guess, the 20th evaluation, the 50th evaluation, and the
final calibration result are compared in Fig. 10. The evolution of the curves shows that the iterations converge to the
final solution that minimizes the objective function. However, the local void ratio distribution does not converge to the
actual experiment data. This is shown in Fig. 11 where the experimental data of void ratio map in cross-section YZ
and the relative error map [defined in Eq. (10)] computed from simulations are presented. Since the sample geometry
and void ratio distribution are not included in the objective function of Case A, the calibration procedure does not
correct the void ratio discrepancy with the initial guess and leads to a numerical solution that a dominant shear band
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TABLE 2: Calibration of material parameters of entire sample using Case A: only macroscopic responses; Case
A1: equal weights of stress ratio, volumetric strain and local void ratio data, starts from results of Case A; Case B:
macroscopic responses and local void ratio distributions; Case B1: equal weights of stress ratio, volumetric strain and
local void ratio data, starts from results of Case B

Number of
C1 C2 C3 C4 ec a l

iterations
Initial guess — −68.00 −767.60 −2742.70 −257.50 0.650 0.980 0.200 mm

Case A 74 −70.57 −832.40 −2524.10 −261.70 0.637 0.960 0.468 mm
Case A1 30 −69.67 −1372.67 −2075.62 −251.90 0.641 0.976 0.364 mm
Case B 117 −67.21 −920.08 −2312.79 −259.45 0.636 0.971 0.977 mm
Case B1 30 −67.91 −1229.29 −2244.82 −262.41 0.6358 0.970 0.979 mm

FIG. 10: Stress ratio and volumetric strain responses of full sample simulation during the calibration procedure using
only macroscopic responses (Case A)

is formed inside the sample, while the actual specimen developed a “barrel” shape that exhibit diffusive bands (Ikeda
et al., 2003).

In the correction step (Case A1), we modify the objective function used as previous calibrated material parameters
set as an initial guess. This modified objective function incorporates additional terms to constrain the material param-
eter set such that the numerical specimen also exhibits the same peak and residual shear strength due to the last two
terms in (14), which reads
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(a)Void ratio distribution from Micro-CT images

(b) Distribution of residuals [defined in Eq. (10)] at selected steps of the Dakota calibration in Case A

FIG. 11: Relative error of local void ratio distribution between full sample simulation and micro-CT data (shown in
cross section in plane YZ) during Dakota calibration procedure using Case A: only macroscopic responses

whereei are void ratio in elementi, Nelementis the number of elements in the FEM model. The contributions of stress
ratio, volumetric strain, local void ratio data are balanced by the number of data points of each type. The weights of
each data type equal to 1.

5.2 Case B: Results from Multiscale Objective Function

The objective function for Case B takes the form
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In this function, the residuals of all available experimental data point are treated equally in the objective function.
Since the number of elements is much larger than the number of stress ratio and volumetric strain data, the objective
function Eq. (15) has much larger weight on micro-CT data than the macroscopic responses. The calibration procedure
in Case B employs the same initial guess of the material parameters previously used in Case A. The calibrated results
are also shown in Table 2 to show comparisons. Compared to other hypoplastic material parameters, the material
length parameterl, which accounts for the micropolar effect in the model, varies more significantly when experimental
data of local void ratio are included in the least square problem. The macroscopic responses obtained by the parameters
sets from initial guess, the 20th evaluation, the 50th evaluation, and the final calibration result are compared in Fig. 12.
Although the volumetric strain response approaches the experiment data along the iterations, the macroscopic stress
ratio response deviates from the experimental response in the sense that the peak stress and residual stress do not
coincide and the softening phenomenon is not apparent. As for the meso-scale data shown in Fig. 13, the calibrated
parameters lead to a deformed configuration much closer predication to actual specimen geometry than that of the
Case A results shown in Fig. 11. In particular, the Case B calibrated simulation correctly predicts the increased of
porosity at the middle of specimen, which is consistent to the observation in the laboratory. The Case A calibrated
simulation leads to porosity increase highly concentrated in a single persistent anti-symmetric shear band that was not
triggered in the actual experiment. This observation indicates the necessity of including micro-structural information
in material parameter identification procedures. Note that the relative errors of void ratio near the top and bottom
surfaces, unlike the central areas, are not significantly reduced during the Dakota calibrations. This is because the
boundary conditions in model simulation does not perfectly represent the experimental setup.

The objective function Eq. (14) is again adopted to perform the correcrtion step from the calibrated results
(Case B1). The correction is made by using the equilibrium weights of different types of experimental data. The

FIG. 12: Stress ratio and volumetric strain responses of full sample simulation during the calibration procedure using
macroscopic responses and local void ratio distribution (Case B)
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Distribution of residuals at selected steps of the Dakota calibration in Case B

FIG. 13: Relative error of local void ratio distribution between full sample simulation and micro-CT data (shown in
cross section in plane YZ) during Dakota calibration procedure using Case B: macroscopic responses and local void
ratio distribution

results are recapitulated in Table 2 and the macroscopic responses in different cases are compared in Fig. 14. Recall
that in the correction step Case A1, the prediction of peak stress has been improved. In this case, the discrepancy
between the model response and experimental data in Case B1 has not been improved or even changed significantly
in the correction step, which indicates that both objective functions Eqs. (15) and (14) have similar local minimizers.

5.3 Discussion

Two calibration strategies are employed in this study. The resultant material parameters and calibrated simulations
are analyzed. In the first strategy, we find material parameter that allows the finite element simulations to replicate
the macroscopic responses as close as possible, but neglect all meso-scale information provided by the micro-CT
images. This optimized material parameter set (optimized in terms of macroscopic responses only), are then used as
the initial guess of the next inverse problem. Following this predictor step, another inverse problem is defined by a
new multiscale objective function that takes account of both the macroscopic data and local void ratio properties used
for calibration. This approach mimics the idea in Ehlers and Scholz (2007) for determining material parameters for
micropolar constitutive laws. The major departure here is the usage of micro-CT image and the elimination of the need
to use multiple experimental tests to generate constraints for the objective function. To analyze the importance of the
initial guess and whether a global optimal value for the material parameter set exists, we employ another alternative
strategy in which the meso-scale information is used right at the predictor step. Then, the same multiscale objective
function used in the corrector step [i.e., Eq. (14)] is used to balance the weights of global and local data.

5.3.1 Comparisons of Results

At the first look, the approach that starts with calibrating macroscopic parameter seems to be better in terms of replicat-
ing compatible shear stress history as shown in Fig. 14(a), even though both calibrated finite element simulations yield
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FIG. 14: Stress ratio and volumetric strain responses of full sample simulation during the calibration procedure using
Case A: only macroscopic responses; Case A1: equal weights of stress ratio, volumetric strain, and local void ratio
data, starts from results of Case A; Case B: macroscopic responses and local void ratio distribution; Case B1: equal
weights of stress ratio, volumetric strain, and local void ratio data, starts from results of Case B

similar volumetric responses. In particular, the second approach is unable to capture the macroscopic peak and resid-
ual shear stresses at the predictor step, and again fails to make any significant improvement in capturing the peak and
residual shear strength after switching to the multiscale objective function, as shown in Fig. 14. As a result, evidence
provided in the macroscopic responses seems to favor the staggered approach similar to the one proposed in Ehlers
and Scholz (2007) in which the calibration process begins with an inverse problem that first curve-fit macroscopic
behaviors, followed by a correction step that uses multiscale objective function to enforce consistency of kinematics.

However, a closer look at the deformed configuration and the meso-scale responses may lead to an opposite
conclusion. In particular, we find that the weight modification approach that begins with calibrating meso-scale in-
formation from micro-CT images actually yields the experimentally observed bifurcation mode, while the macro-
then-microscopic approach does not. In Case A,l = 0.468 mm, which is close to the mean particle diameterd50 =
0.338 mm, a persistent shear band has developed in the specimen. This persistent shear band is non-symmetric and has
not been observed in the micro-CT images captured during the drained triaxial compression test. In Case B, however,
l = 0.977 mm, which is 2.5 times larger than the mean particle diameter and the barrel-shaped deformed specimen
develops a barrel deformed configuration followed by the development of an X-shaped shear localization zone. These
kinematic features are consistent with what is observed in the physical experiment, even though the Case B simulation
does not replicate the shear stress responses as close as the Case A simulation does.

In other words, the set of material parameters that leads to the best replica of macroscopic responses observed in
laboratory does not necessarily yield the correct bifurcation mode. As a result, the reasonable strategy is to design
an objective function that acts as a compromise between matching macroscopic responses and maintaining consistent
kinematics at meso-scale level. Furthermore, the notable difference in the macroscopic and microscopic responses
predicted by the staggered approach and weight modification approach indicates that the calibration exercise is highly
path-dependent and multiple local minima are likely to exist, thus making it difficult to find the global minimum point
for the multiscale objective function in the parametric space.
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5.3.2 Source of Error

The discrepancy between the experimental data and simulation results may also be attributed to the idealized bound-
ary condition applied on numerical specimen. In particular, the specimen-loading-plate interaction between the sample
and the loading pistons as well as the elastic membrane are not accurately and explicitly modeled (Albert and Rud-
nicki, 2001). Moreover, the assumption that material parameters are homogeneous throughout the specimen may also
oversimplify the spatial variability of the physical specimens. Finally, the micropolar finite element model is formu-
lated using the Jaumann rate of the Cauchy stress. The Jaumann rate is an objective rate which is suitable for materials
in the geometrical nonlinear regime with small strain and large rotation. However, some previous works, such as
Molenkamp (1986), have pointed out that the Jaumann rate should be avoided for problems with large deviatoric
strain. These limitations will be considered in future studies.

5.3.3 Length Scale, Higher-Order Kinematics and Bifurcation Modes

The higher-order quantities, namely the curvatureκ and the coupled stressµ, can be computed from the micropolar
model simulation, while this information is not available from micro-CT images. In this study, two types of shear bands
are encountered with different material parameters in the finite element simulations even though both simulations
began with the same initial geometry and void ratio distribution. In Case A and B, the calibrated material lengthl
varies significantly, compared to other material parameters.

In both cases, the distribution of the norm of the couple stress tensor|µ| =
√
µ221 + µ

2
32 + µ

2
31 andthe norm of the

curvature tensor|κ| =
√
κ221 + κ

2
32 + κ

2
31 areshown in Figs. 15 and 16, respectively. The coupled stress and curvature

localize in the transition zone between the shear localization region and homogeneously deformed region, suggesting
that the micropolar effect becomes very important when high-gradient deformation occurs in granular materials. This
observation is consistent with numerical experiments conducted with discrete element method (Ehlers et al., 2003;
Oda and Iwashita, 2000; Wang and Sun, 2016a,b).

The evolution of shear bands simulated in Case A and Case B is illustrated in Fig. 17 using color map of|µ|, as
well as in Fig. 18 using color map of|κ|. At the beginning of the triaxial loading, two-axes symmetric localization
patterns emerge for both simulations (Ikeda et al., 2003). After the peak stress of Case A (at 3% axial strain), the
pattern bifurcates to an asymmetry pattern: one shear band becomes stronger than the other. Upon further loading, the
dominant shear band becomes persistent and the other weak band gradually dies out. As for Case B, the two bands
compete with each other along the deformation but neither predominates. The initial pattern bifurcates to bilateral
symmetry so that the symmetry with respect to the horizontal axis is broken. The diffuse mode is preserved to the end

(a)Case A (b) Case B

FIG. 15: Norm of the coupled stress tensor|µ| =
√
µ221 + µ

2
32 + µ

2
31 for results of inverse problems A and B at the

residual stage
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(a)Case A (b) Case B

FIG. 16: Norm of the curvature tensor|κ| =
√
κ221 + κ

2
32 + κ

2
31 for results of inverse problems A and B at residual

stage

FIG. 17: Evolution of shear localization in cross section YZ of calibraion results of Case A and Case B, illustrated in
the norm of coupled stress

of the loading. This analysis shows that, even though the spatial variability of the material parameters is neglected,
the numerical values of the material parameters, particularly the material lengthl, still impose strong effects on the
failure mode of numerical specimen.
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FIG. 18: Evolution of shear localization in cross section YZ of calibraion results of Case A and Case B, illustrated in
the norm of curvature tensor

5.3.4 Critical State

The anisotropy density functionfd of Eq. (3) is an indicator of the critical state, a condition at which particulate
materials keep deforming in shear at constant void ratio and stress (Casagrande, 1936; Roscoe et al., 1958). In the
micropolar hypoplasticity adopted in this study, the local void ratio approaches the critical void ratioec, fd approaches
1. The distribution offd of the two numerical specimens captured at residual stage of Cases A and B are presented in
Fig. 19. Since the different calibrated material parameters are used in Case A and B, the failure modes as well as the
locations where the Hostun sand first reaches the critical state are also different. In Case A, the elements residing in
the persistent shear band are close to the critical state, while the elements outside the zone are not close to it. In Case
B, the pattern offd also coincides with the diffuse failure mode presented in Fig. 17, showing that the unit cells inside
the shear band are also closer to critical state than the host matrix, but the difference between the numerical value
of fd within the host matrix and inside the shear band are less significant than Case A. Both findings are consistent
with Tejchman and Niemunis (2006); Wang and Sun (2016b) where the strain localization triggered by the material
bifurcation in dense assemblies tends to have the void ratio approaching its critical value locally, but the specimen
itself does not necessarily reach critical state globally. Comparing this observation with the coupled stress norm shown
in Fig. 17, we observed that the shear band is not only much closer to the critical state, but also has significantly lower
coupled stress magnitude. This result is consistency with the norm of the curvature tensor shown in Fig. 18 where
the specimen has significant amount of micro-rotation at the boundary of the shear band and the host matrix but the
micro-polar kinematics is not significant inside the shear band and in the host matrix.

6. CONCLUSIONS

In this work, we incorporate information obtained from both macroscopic measurement and meso-scale kinematics to
analyze the sensitivity of the predicted characteristic length and mechanical responses of a 3D micropolar hypoplastic-
ity finite element model. To the best knowledge of the authors, this is the first contribution that incorporates micro-CT
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FIG. 19: Distribution offd for results of inverse problems A and B at the residual stage.fd = 1 indicates that the
material is in critical state.

images and multiscale objective function into the material parameter identification procedure for micropolar plasticity
for granular materials.

The results show that the incorporation of meso-scale information may significantly change the predicted length
scale obtained from the inverse problems and leads to different bifurcation modes in the finite element simulations.
Even though similar macroscopic responses are observed from simulations conducted with single-scale and multi-
scale objective functions, the macroscopic responses in the former case may yield meso-scale responses that are not
consistent with those of the real specimen. As a result, the apparently good curve-fitting of macroscopic response
is not a good indicator of forward prediction capacity. This result has important implications for the validations of
grain-scale simulation tools (such as discrete element, lattice-beam, and lattice spring models) in which macroscopic
stress–strain responses are often the only experimental data available for benchmark and validations. The numerical
results, particularly the difference of the failure modes obtained from different objective functions, indicate that using
macroscopic stress–strain curve alone to evaluate or validate grain-scale simulations is neither productive nor reliable.

Although the higher-order quantities, the curvatureκ and the coupled stressµ, are not available from micro-CT
images, they are computed from the micropolar simulations with the material parameters optimized for different ob-
jective functions. Depending on which set of material parameters is employed, the numerical specimen may either
develop a persistent shear band, which is not observed in the experiment, or a diffuse failure mode, which is observed
from micro-CT images. Comparisons between the simulation results with micro-CT images suggest that a staggered
predictor–corrector procedure that first employs the macroscopic objective function to curve-fit the macroscopic re-
sponses, then use the multiscale objective function to enforce kinematic constraints seem to yield a more compatible
macroscopic constitutive response with the experimental counterpart, but the material parameters that lead to the best
curve-fitting macroscopic responses also lead to an incorrect bifurcation mode. This finding is alerting, as the material
parameters that lead to the wrong bifurcation mode in the backward calibration exercise is also likely to generate
even more unrealistic forward prediction. The apparently good match in the macroscopic curve can be misleading and
generate a false sense of confidence for the numerical model. This is a noteworthy concern, as there is an alerting
trend in which the forward-predictive capacity of grain-scale models are often incorrectly measured by how well they
curve-fit the macroscopic stress–strain curve, rather than how well they are able to generate compatible and consistent
mechanical behaviors across length scales. The issue associated with this calibration approach is not apparent when
calibration is conducted at the unit cell level in which only homogeneous deformation is considered. However, when
macroscopic stress–strain curve is used to calibrate meso-scale or grain-scale models, the dimensions of the paramet-
ric space can be larger than the number of constraints provided by the macroscopic responses. The insufficiency of
constraints then makes it possible to generate simulations that apparently match the macroscopic calibration with a
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completely inconsistent microstructure. By incorporating microscopic information from micro-CT images to calibrate
material parameters, this research provides important evidence to suggest that constraining micro-mechanical model
to match macroscopic responses is not sufficient. Nor is it a meaningful way to measure the quality of numerical
predictions. These lessons are important for the calibration and validation of high-order and multiscale finite element
models.
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