
1. INTRODUCTION  
Deformation bands in geological materials refer to 
narrow zones of inhomogeneous strain. Their 
development is often analyzed as a material bifurcation 
phenomenon that takes place as an alternative to 
homogeneous deformation (Rudnicki & Rice 1975). 
Deformation bands can be categorized as shear, 
compaction, or dilation, depending on the predominant 
mode of localized strain within the band. In geological 
materials, shear occurs most commonly with some 
amount of volumetric deformation, either dilation or 
compaction (Rudnicki, 2004; Aydin et al. 2006; Sun et 
al. 2011b).  A dilatant shear band can cause an increase 
in porosity and change of flow path, thereby altering the 
fluid transport inside the pore space. This feature is of 
economic importance, because dilatant shear bands may 
act as flow conduits that leak injected pore-fluid in 
reservoirs (Wawersik et al. 2006).  

To predict how formation of dilatant shear bands affects 
hydraulic properties, in particular, permeability, 
macroscopic finite element analysis can be used to 
capture the evolution of porosity. Changes of 
permeability are then estimated from the porosity 

evolution via Kozeny-Carman or other empirical 
relations. This macroscopic approach, however, cannot 
provide information on how microstructural attributes, 
such as grain sliding, rotation and rearrangement, affect 
hydraulic properties. Furthermore, a macroscopic 
empirical porosity-permeability relation may fail to 
deliver reliable prediction when the permeability 
changes are caused by factors other than volumetric 
changes of pore space, such as isolation of the pores and 
changes in tortuosity and size distribution of flow 
channels as shown in Sun et al. 2011a. Volumetric 
digital image correlation applied to X-ray tomography 
images of geomaterials can help understanding the 
kinematics of grains motion and changes in pore 
geometry as shown in Lenoir et al. 2007.  However, due 
to the technical difficulty of conducting mechanical tests 
while simultaneously performing CT X-ray imaging, 
experimental measurement of microstructural attributes 
is rare (e.g., Hall et al. 2010).  

To analyze the links between microstructural granular 
motion and macroscopic hydraulic properties in a 
repeatable and cost-efficient way, we introduce a 
multiscale numerical alternative. This approach 
incorporates the discrete element method to simulate 
grain motion inside the dilatant shear band and a 
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ABSTRACT: This paper presents a multi-scale lattice Boltzmann/finite element scheme that quantitatively links particulate 
mechanics to hydraulic properties of a grain assembly obtained from a simple shear discrete element simulation. A spatial 
homogenization is performed to recover the macroscopic stress from the micro-mechanical force chances. The pore geometries of 
the shear band and host matrix are then quantitatively evaluated through morphology analysis and flow simulations. Hydraulic 
properties estimated from multiscale flow simulations are compared with those inferred from volume averaging and geometric 
averaging schemes. Results from the discrete element simulations imply that grain sliding and rotation occur predominately within 
the dilatant shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local 
permeability. While considerable anisotropy in the contact fabric is observed within the shear band, anisotropy of the permeability 
is, at most, modest in the assemblies composed of spherical grains. 

 

 

 

 

 

 

 



multiscale lattice Boltzmann/finite element scheme to 
capture the evolution of permeability. Since the motion 
of every particle in the DEM ensemble is recorded at 
every time step, this approach makes it possible to 
quantify how individual particles affect pore geometry 
and macroscopic hydraulic properties without the need 
to introduce an additional phenomenological law.   

This work is an extension of the research reported 
previously in Sun, et al. 2013. For completeness, part of 
the results previously reported in Sun et al. 2013 will be 
mentioned.  

2. METHOD 
In this study, we use the open source 3D discrete 
element code OVAL to simulate a dry simple shear test 
on a specimen composed of spherical particles (Cundall 
& Strak 1979; Antonellini & Pollard 1995; Iwashita & 
Oda 1998; Iwashita & Oda 2000, Kuhn, 2004; Wang et 
al. 2008). We then analyze how formation of a shear 
band changes the microstructural attributes of the 
granular materials using a variety of tools, including a 
hybrid lattice Boltzmann-finite element simulations, and 
network measures from graph theory, such as the Euler-
Poincare characteristics and the Cheeger constant. The 
goal is to understand how plastic dilatancy caused by 
grain rearrangement affects the hydraulic characteristics 
of both the host matrix and the shear band, before and 
after the formation of dilatant shear band.  

2.1 Grain assembly from discrete element simulations 

A three-dimensional discrete element simulation is 
conducted via a DEM code OVAL (Kuhn, 2004, 2011). 
The grain assembly consists of spherical particles, 
among which simplified constitutive contact laws 
explicitly model the grain-to-grain interactions.  The 
motion of each particle is obtained through force and 
momentum balances that read,  

m!!u+Cm !u+P(u) = Fext
I !!ω =Mext

                                           (1) 

where m and Cm are the mass and translational damping. 
P(u) is the net force imbalance vector due to the inter-
grain contact forces and Fext denotes the external loads 
exerted by the walls or gravity. I is the moment of inertia 
and !!ω  is the rotational acceleration and Mext is the 
external moment acting on the particular grain. The 
governing equations listed in (1) are solved via a explicit 
central difference time integrator. Introducing mass Cm 
into the balance laws and contact dampings Cs in the 
grain contact constitutive model approximates the quasi-
static condition.  

In our implementation, we use a simplified contact 
model in which the grain-to-grain force-displacement 

relation is governing by a frictional Hertz-Mindlin 
mechanism with viscous contact damping. Since our 
goal is to simulate the granular nature of cohesion-less 
material, no force due to cohesive bonding is assigned. 
The resultant constitutive law reads,  

df n = kndδ; kn =
2Gg Re

1−ν
 δ1/2

df t = k sds;  k s =
2 2Gg Re

2−ν
 δ1/2

                        (2) 

where δ is the indentation at the contact, Gg and v is 
the shear modulus and Poisson ratio of the grains 
and Re is the effective radius, which is the a 
function of the radii of two contacted grains R1 and 
R2, i.e., 

Re =
2R1R2
R1 + R2

                                                          (3) 

In addition, the tangential force is limited by the 
frictional coefficient such that,  

| f
t
| ≤ µ f

f
n                                                               

(4) 

where µf is the frictional coefficient. To maintain quasi-
static simulation, a viscous damping force is applied at 
each contact, i.e., 

f vis =Cs !s                                                                (5) 

where !s  is the tangential sliding velocity at a contact. 
This contact viscosity is diminished when the frictional 
sliding occurs, as such sliding becomes a dissipation 
mechanism that prevents spurious grain vibrations. The 
DEM simulation was conducted with an assembly of 
129000 spherical grains that were densely arranged with 
an initial isotropic fabric. The assembly has a grain size 
distribution of a poorly graded sand, with a coefficient of 
uniformity Cu of 1.4, and the median particle diameter of 
10mm. The dense arrangement was attained from an 
initially sparse random arrangement of particles by 
isotropically reducing the boundary dimensions. During 
the isotropic compaction phase, the frictional force was 
temporarily removed. This technique was previously 
used in Thornton, 2000. The porosity of the compacted 
assembly is 0.337.  

2.2 Multi-scale hybrid LBM-FEM simulations 

To overcome the computational constraint on the size of 
numerical specimens and estimate effective permeability 
in a cost-efficient way, we implement the multi-scale 
finite element/Lattice Boltzmann method proposed by 
White et al (White et al 2006) and employ it on a 3D 
reconstructed image of Aztec sandstone from the Valley 



of Fire State park (Lenoir et al 2010). The calculation of 
macroscopic effective permeability of the specimen 
involves only three simple steps.  

First, the entire specimen is divided into cubic unit cells 
of identical sizes in which the local effective 
permeability is measured. Providing that these unit cells 
are large enough to contain sufficient information about 
the microstructure but small enough to preserve the 
macroscopic heterogeneity (Giltman et al. 2007), then 
one can recover the local effective permeability of the 
unit cell through lattice Boltzmann simulations.  

The lattice Boltzmann simulations are conducted in each 
unit cell with the following governing equation i.e.,  

c      in i
i i

f fe C
t x

∂ ∂
+ ⋅ = Ω

∂ ∂                                      (7)
 

where fi and  ei are the distribution function and the 
lattice microscopic velocity respectively. Ωc denotes the 
spatial domain of the unit cells. The evolution of the 
distribution function depends on how fluid molecules 
collide with each others. This interaction is replicated by 
the collision operator Ci.  

By assuming that the permeability tensor is symmetric, 
the six independent components of the locally 
homogenized effective permeability tensor kij can be 
computed by applying different boundary conditions on 
the same numerical specimen. By relating volume 
averaged velocity <vi(x)> with the prescribed 
macroscopic pressure gradient p,j, the local effective 
permeability kij can be recovered via the Darcy’s law, 
i.e.,   

( )
,ij i
j

k v x
p
µ

= ! < >
                                              (8) 

 

where µ is the kinematic viscosity and  <…> denotes the 
volume average over a  local unit cell. The macroscopic 
velocity and pore pressure are defined in terms of the 
microscopic quantities f and ei, i.e.,  
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where a denotes the number of possible collision 
direction of the lattices and c denotes the speed of the 
sound which is treated as a constant in lattice Boltzmann 
simulations (Succi 2001). Finally, the overall effective 
permeability of the specimen is computed by solving the 
macroscopic incompressible pore-fluid transport 
problem with neglected body forces via finite element 
method, i.e.,  

,

,

0              in   (continuity equation)

      in   (Darcy's law)
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ij s
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k
v p
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      (10)

 

where Ωs is the spatial domain of the numerical 
specimen. Ιn the macroscopic finite element problem, 
the local effective permeability kij is assumed to be 
uniform inside each unit cell and the overall effective 
permeability is computed by applying equation (1) to the 
specimen domain, as shown in Figure 1.  

 
Fig. 1. Multiscale numerical scheme used to determine 
effective permeability in large scale. Reproduced from Sun, et 
al. 2011a. 

2.3 Geometrical Analysis on void space in simulated 
assembly  

When a deformation band forms, the plastic deformation 
would concentrate in a narrow zone. In the DEM 
simulations presented in this paper, we did not introduce 
any constitutive law or mechanism to simulate grain 
crushing. As a result, this concentration of plastic 
deformation is mainly due to the grain rotation and re-
arrangement inside the shear band. In such case, one can 
view the contact network as a mathematical object called 
a contact graph, and thus one can measure how the 
topology of the contact network and pore space time 
inside and outside the deformation band change over 
time using measures made available from graph theory 
(Tordesillas, 2007, 2010; Tordesillas & Muthuswamy, 
2009; Sun et al 2011a; Sun et al 2011b; Sun et al., 2013). 

Here we introduce the usage of two common numerical 
measures from graph theory to measure the geometrical 
attributes of both the pore space and solid contacts, 
inside and outside the shear band. For the pore space 
problem, we first generate an binary image of DEM 
assemblies using the region growing method outlined in 
Sun et al. 2011a and Sun et al. 2013, then assign vertex 
on each void voxel and connect each pair of neighbor 
vertices with edges to form an connected graph. We then 
compute the Euler-Poincaré characteristic of flow 
network, which reads,  

! = N " C+ H                                                      (11) 



where E is the Euler number, N is the number of 
interconnected pores, C is the number of loops in the 
pore space and H is the number of objects completed 
enclosed by pore space. As a result, the Euler-Poincaré 
characteristic measures how “connected” the pore space 
is. A positive Euler-Poincaré characteristic indicates less 
branching in the flow path, while a negative one 
indicates an interconnected, network-like pore geometry.   

The second numerical measure we use is the Cheeger 
constant (Chung, 1997).  We compute the Cheeger 
constant on the solid grain contact network. The solid 
network is formed by assigning vertex to represent each 
grain and forming edges to represent the contacts of 
pairs of contacted grains. The topology of the grain 
assembly is therefore represented by an undirected finite 
graph composed of vertices (representing the grains) 
connected by edges (representing the normal contact).  

Now, let G be the entire undirected finite graph with 
vertex set V(G) and edge set E(G). Let A be a subset of 
V(G), i.e., a collection of grains in the assembles, and 
that ∂A  be all the edges connecting A to neighboring 
vertices outside of A, i.e.,  

∂A= {(x, y)∈ E(G) | x ∈ A, y ∈V (G) \ A}            (12) 

The Cheeger constant, which denoted as h(G) herein, is 
defined as,  

h(G) =min{
|∂A |

| A |
 :  A ⊆V (G), 0 <| A |<

|V (G) |

2
}       (13) 

where | A |  and | ! A |  are the number of grains and grain 
contacts in the subset A. In other words, the Cheeger 
constant measures how easy or difficult the grain 
assemblies can be cut into two pieces with no contact in 
between. A low Cheeger constant indicates that such a 
cut reduces a fewer number of contacts, while a high 
Cheeger constant indicates a more robust contact 
network. Here our goal is to use Cheeger constant to 
quantify changes in microstructural attributes due to 
rearrangement and rotation of grains inside the shear 
band affecting force distribution in the grain assemblies.  

3. RESULTS 
We study the geometrical attributes inside and outside a 
dilatant shear band formed during a simple shear test 
simulations at 12% shear strain, and compare it with the 
permeability calculation to determine how changes of 
pore geometry affect the hydraulic properties. Figure 2 
shows the rotation magnitude (in radians) of the grains 
in the assembly subjected to simple shear loading before 
and after the formation of a dilatant shear band. One 
interesting characteristics we observed is that grain 
rotations are mostly concentrated inside the shear band.  

 

 
Fig. 2. Spatial distribution of rotation magnitude in assembly 
at shear strain = 6%(top) and 12% (bottom). Figure 
reproduced from Sun et al. 2013.  

We also analyzed the pore geometry of 18 unit cells in 
the sizes of 4mm X 4mm X 4mm:  nine inside the shear 
band and nine outside the shear band.  We found that the 
averaged Euler-Poincaré characteristic of the pore space 
changes from -491 to -360 (a 26% decrease), while the 
host matrix counterpart changes from -438 to -493 (a 
12% increase) as shear strain monotonically increases 
from 0 to 12%. This trend is consistent with the more 
significant porosity increase of the shear band (from 
0.33 to 0.38), and the nearly constant porosity observed 
in the host matrix (from 0.32 to 0.33).  

This change in the pore space topology is due to the 
rearrangement of grains due to rotation as observed in 
Figure 1. To further analyze how grain arrangement 
affects the pore geometry, we compute an approximated 
Cheeger constant for the grain cluster at shear strain = 
12%. The procedure is as followed. First, we sampled a 
regions of the assembly both inside and outside the shear 
band. The sizes of the sample regions ranged from 1mm3 
to 512mm3. For each given size, we then selected 400 
samples (200 inside and 200 outside the shear band) and 



counted the number of particles for each sample, as well 
as the number of solid contacts that can cut the sample 
from the assembly. The results are shown in Figure 3. 
We found that the approximated Cheeger constant is 
both less than one inside and outside the shear band. 
Nevertheless, the Cheeger quotient seems to be 
consistently lower inside the shear band. This small 
difference indicates that the grain contact network is 
slightly easier to form force bottlenecks than that of the 
host matrix. This tendency however is not insignificant 
and thus the contact networks inside the shear band and 
host matrix are more or less similar, even though the 
porosity is different.  

  
Fig. 3. Cheeger Quotient vs. number of particles for grain 
assembles inside (blue) and outside (red) the shear band at 
shear strain =12%.  

Figure 4 presents the computed streamlines of a unit cell 
obtained from lattice Boltzmann simulations when shear 
strain = 12%.  While prescribed by the same amount of 
pore pressure, the flow velocity inside the shear band is 
found to be, on average, higher than that of a host 
matrix. The multiscale FEM-LBM computation reveals 
that the permeabilities in normal and parallel directions 
of the shear band are 900 and 823 Darcy inside the shear 
band. Meanwhile, the permeabilities in the norm and 
parallel direction of the shear band are 480 and 460 
Darcy in the host matrix. This difference is consistent 
with the 5% difference in porosity inside and outside the 
shear band. The changes in the Euler number also 
indicates that the pore space is less network-like inside 

the shear band, presumably due to the increase in pore 
pressure. Nevertheless, we do not observe any 
bottleneck among the solid contacts of the assembly, 
inside or outside the shear band.  

 

 
Fig. 4. Streamline in pore space inside (top) and outside 
(bottom) the shear band at shear strain =12%.  

CONCLUSION 
We present the usage of metric from graph theory to 
measure the topology of both the solid contact network 
and pore space and establish links to explain how 
differences of the connectivity of solid grains and pore 
space may affect the permeability.   
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