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ABSTRACT: The fully coupled diffusion-deformation processes occurring within 
porous geomaterials, such as sand, clay and rock, are of interest to numerous 
geotechnical engineering applications. In this work, a stabilized enhanced strain finite 
element procedure for poromechanics is integrated with an elasto-plastic cap model to 
simulate the associative and non-associative hydro-mechanical responses of fluid-
infiltrating biphasic collapsible porous geomaterials. We present a quantitative 
analysis on how macroscopic plastic response caused by pore collapse and grain 
rearrangement affects the seepage of pore fluid, and vice versa. Finite element 
simulations of shear failure problems will be presented to study the effect of pore 
pressure dissipation on the stress path and plastic response of the porous 
geomaterials.  
 
INTRODUCTION 
 

The fully coupled diffusion-deformation processes occurring within porous media, 
such as sand, clay, and rock, are of interest to numerous geotechnical engineering 
applications. The presence of fluid inside the pores and in between the interconnected 
grains may induce excess pore pressure, limit volumetric deformation, and introduce 
rate dependence to the mechanical response of the solid skeleton due to the transient 
nature of fluid diffusion (Coussy 2004; Rice and Cleary 1976). Since pore-fluid flow 
may profoundly change the mechanical response of porous media, it is important to 
take it into account to ensure the sufficiency of engineering designs.     

The fluid-solid interaction in porous media is often viewed in the context of 
mixture theory, in which one or multiple fluids in the connected pore network and a 
solid skeleton are homogenized as constituents of a continuum mixture (Biot 1941; 
Coussy 2004).  The resulting boundary value problem leads to a two-way coupled 
system involving at least two sets of balance equations: one to characterize the 
deformation of the solid skeleton, and one for the mass balance of the pore fluid.   
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There is an extensive body of literature focusing on finite element analysis of such 
a coupled system for geotechnical engineering applications (Jeremic et al. 2008; 
Prevost 1982; Sun et al. 2013b).  Some of these efforts incorporate critical state 
plasticity models to capture shear failure and strain localization underneath the 
foundation. This type of shear failure may be accompanied by various amounts of 
plastic dilation. Nevertheless, geomaterials, such as high-porosity rock and salt, are 
vulnerable to both shear and compaction failure. To capture the inelastic compactive 
behavior of fully saturated rock, we incorporate a cap plasticity model that uses a 
pressure-dependent shear yielding/failure surface with a hardening compactive 
elliptical cap to capture the pore collapse (Foster et al. 2005; Regueiro and Foster 
2011). This model features a material state that may move freely from compactive to 
shear-dominated dilative deformation. The third stress invariant is introduced to 
capture the difference in strength of geomaterials observed in triaxial compression 
and extension tests.   

Another upshot of the current formulation is the introduction of stabilization 
procedure to enable the usage of the same finite element space for both displacement 
and pore pressure (Sun et al. 2013b; White and Borja 2008) and the usage of a new 
combined F-bar method to avoid volumetric locking (Sun et al. 2013a; Sun et al. 
2013b). The formulation is then integrated with a cap-surface model to simulate the 
fully coupled deformation-diffusion process exhibited in porous rock, which are often 
encountered in energy-related applications. By integrating the cap-surface model with 
the stabilized hydro-mechanical scheme, we study how inelastic compaction affects 
the hydraulic response of collapsible porous media and predict whether the presence 
of pore-fluid would delay or promote inelastic compaction. 
 
ASSUMED STRAIN MIXED FINITE ELEMENT FORMULATION 
 

In this section, a stabilized assumed strain mixed finite element formulation for 
solving poromechanics problem is briefly summarized.  The central premise of the 
poromechanics theory is that the total stress, , experienced by the solid-fluid 
mixture is the sum of effective stress experienced by the solid skeleton and the 
pore pressure p induced by the pore fluid i.e.,  
 
  (1) 
where B  1 K / Ks  is the Biot’s coefficient, a scalar parameter related to the solid 
skeleton bulk modulus K and the solid grain bulk modulus Ks, and I is the second 
order identity tensor. 
The governing equations for mixed finite element formulation consist of balance of 
linear momentum and balance of mass, which are given as 
 
  (2) 

 

Bx  u 1

M
p x 

1


k(x p  f )  0  (3) 

where is the total unit weight consisting of solid (superscript ‘s’) and 
fluid (superscript ‘f’) part. u is solid displacement vector, the superimposed dot is for 
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time derivative. M is the Biot modulus, and k is the intrinsic permeability of the 
porous system. For Biot modulus M, the following form proposed in (Biot 1941; 
Coussy 2004) are used. 

 M 
KsK f

K f (B  f ) Ks
f

 (4) 

where Ks and Kf are the bulk moduli of the solid grain nd the pore-fluid constituents. 
The weak form of the poromechanics problem is then obtained by coupling Eqs. (2) 
and (3) and applying the principle of virtual work. To maintain stability, we project 
the interpolated pore pressure field onto a constant and introduce it in the weak form 
of (3) to maintain numerical stability.  On the other hand, the volumetric locking of 
the numerical solution is circumvented by an assumed strain method. In particular, an 
assumed strain method which derives directly from the assumed deformation gradient 
method in (Sun et al. 2013b) is utilized. The central idea is to replace the standard 
infinitesimal strain field with an incompatible assumed strain field  

  (5) 

where Fis the assumed deformation gradient that overcomes the volumetric locking. 
Interested readers may referred to (Sun et al. 2013a and Sun et al. 2013b) for detail. 
 
CAP PLASTICITY MODEL AND NUMERICAL IMPLEMENTATION 
 

Cap models are typically used in the modeling of complicated behavior of porous 
geomaterials. The formulation and numerical implementation of a three-invariant, 
isotropic and kinematic hardening cap plasticity model are briefly presented in this 
section. The model is composed of pressure-dependent shear yield surface and a 
hardening compaction cap as shown in Fig. 1.  
 

 
Fig. 1. Cap plasticity model yield surface. 

 
Model formulation 
 

Before introducing the yield and plastic potential functions, a deviatoric back 
stress tensor  is presented to capture the Bauschinger effect, such that the relative 
stress tensor can be defined as . The three stress invariants of the relative 
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stress tensor are I1   ii , , and J3
 

1

3
( ) . The superscript   means the 

quantity is expressed in term of relative stress tensor . The yield surface f and 
plastic potential function g of the cap model are both written in terms of stress 
invariants of relative stress tensor, i.e., I1, J2

 , J3
 , as 

 f  (( ))2 J2
  Fc (Ff  N )2  0  (6) 

 
 g  (( ))2 J2

  Fc
g (Ff

g  N )2  (7) 

where Ff  is an exponential shear failure function, and Ff
g is the corresponding plastic 

potential surface given as 
 Ff  A C exp(DI1) I1  (8) 

 Ff
g  A C exp(LI1)I1 (9) 

The shear failure surface Ff captures the pressure-dependence of the shear strength 

of the material. N is a material parameter that represents the offset of the yield 
function from shear failure surface. A, C, D and   are material parameters fit to 
experimental peak stress. L and   are determined from experimental measurements 
of volumetric plastic deformation. ( )  is a function of the Lode angle  , which is 

given as 

 ( ) 
1

2
1 sin(3 )

1


(1 sin(3 ))







 (10) 

where  is the ratio of triaxial extension strength to compression strength. Fc provides 
a smooth elliptical cap to the yield function and is given as 

 Fc  1 H (  I1)
I1 

X( )






2

 (11) 

where H (  I1) is the Heaviside function. The function X( )  is the intersection of 
the cap surface with the I1  axis in the meridional stress space, and is given as 
 X( )   RFf ( ) (12) 

where R is a material parameter governing the aspect ratio of the cap surface. The 
corresponding functions for the plastic potential g are given as 

 Fc
g  1 H (  I1)

I1 
X g ( )







2

 (13) 

 X g ( )  QFf ( )  (14) 

where Q is a material parameter analogous to R. 
There are two internal variables involved in the cap plasticity model: the cap 

hardening parameter  for isotropic hardening, and the back stress for kinematic 
hardening. The evolution of  is related to the volumetric plastic strain while the 
evolution of is related to the deviatoric plastic strain. The evolution expressions are 
given as 
  (15) 
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  (16) 

where  is the consistency parameter, and c is a material parameter that controls the 

rate of hardening.  is a function which limits the growth of the 

backstress as it approaches the failure surface. 
The evolution of isotropic hardening parameter  , is given as 

    h ( ) (17) 

  (18) 

where v
p is the volumetric plastic strain, which is computed from 

 v
p W {exp[D1(X( ) X0 ) D2 (X( ) X0 )2 ]1} (19) 

In the above, W, D1 and D2 are material parameters, X0  X( 0 )  is the initial cap 
position with  0 being the initial value of the cap parameter, a material constant. 
 
Numerical implementation 
 

Given the values of stress and internal variables at time tn , and the strain 
increment , the goal of the numerical integration is to find the stress and internal 
variable values at time tn1 . This is accomplished using the evolution equations (15), 
(17) while at the same time satisfy the yield condition (6). In this work, we employ 
both implicit and a refined explicit integration algorithms, which contains an 
automatic stress correction algorithm (Slone et al., 2001) to prevent stress and 
hardening parameters from drifting away from the yield surface. Alternatively, a 
semi-implicit algorithm proposed by (Tu et al. 2009) for integrating non-smooth 
elasto-plastic models may be applied. 

The proposed assumed strain coupled finite element formulation and the cap 
plasticity model are integrated within Sandia National Laboratories’ ALBANY 
analysis code (Salinger et al. 2013). The code is designed for the rapid development 
of finite-element analysis capabilities enabled through the concept of agile 
components, where generic building blocks of capabilities are readily assembled to 
meet the requirements of ultimate analysis application. Genericism is provided by the 
use of template-based generic programming (TBGP) techniques. The code’s 
components are implemented to operate on general template data types, which 
specialized at, compile time to deliver the desired capabilities. As an outcome of this 
overall design, ALBANY has a unique infrastructure that limits the need for 
programming to just writing the physics residual equations based on a generic type; 
ALBANY will then compute the system Jacobian and pre-conditioner for the Newton 
nonlinear solver. ALBANY is openly available at the download sites given in the 
bibliography. 
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NUMERICAL EXAMPLES 
 

In this section, we present finite element analysis of an unconfined drained shear failure 
problem. The objectives are two-folds: (i) to analyze how local pore-fluid diffusion may affect the 
formation of a shear band; and (ii) to provide a numerical assessment of the rate effect induced 

by the seepage on the mechanical responses. We assume isotropic homogeneous media and 
isotropic permeability tensor. The analysis is performed in small-deformation region. The 

boundary conditions are illustrated in  
 
 
 
 
 
 

	
Fig. 2. Gravity is neglected. All material properties are calibrated to Salem 

limestone data, as reported in (Sun et al. 2013a) and reference therein. It should be 
also pointed out that if field data is available, it would be desirable to present the load 
with respect to initial in situ stress. But in current work, we assume zero initial stress. 

 
                                               
 
 
 
 
 
 
 

 
	

Fig. 2. Boundary conditions of the unconfined drained shear loading. 
Highlighted elements are for reporting stress paths. 

 
Rate effects 
 

First, we assess the importance of rate effects on local excess pore pressure build-
up and analyze whether the non-uniformity of excess pore pressure causes significant 
effects on the mechanical response. For comparison, we prescribed the horizontal 
displacement of the top and bottom of the specimens at three different loading rates: 
10-1, 10-3, and 10-5 m/second. This difference in prescribed loading rates leads to 
various amounts of shear-induced diffusion and pore pressure build-up. Fig. 3 
demonstrates the amount excess pore pressure generated when the prescribed shear 
strain reaches 10%.  
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(a) 10-1 m/s loading rate (b) 10-3 m/s loading rate  (c) 10-5 m/s loading rate 
Fig. 3. Unconfined drained shear loading. Excess pore pressure build-up at 10% 
global shear strain under different loading rates. 
 

All the simulations are globally drained. In an idealized situation where local 
seepage is neglected, all simulations are expected to yield the same result. However, 
the results presented in this example clearly indicate that the local pore-fluid diffusion 
may introduce discrepancies in mechanical response if the ratio between loading rate 
and hydraulic conductivity is sufficiently high. In addition, the local pore pressure 
build-up during the shear phase influence the effective stress path and elaso-plastic 
responses. Fig. 4 compares the equivalent plastic strain developed at various loading 
rates in fully saturated and dry simulations. For illustration purposes, quantities such 
as equivalent plastic strains at integration points are projected onto the nodes via a 
global L2 projection scheme (Mota et al. 2013). 

 

                             
    (a) dry case    (b) 10-5 m/s loading rate 

                             
    (c) 10-3 m/s loading rate  (d) 10-1 m/s loading rate 
Fig. 4. Unconfined drained shear loading. Equivalent plastic strain contours at 
10% global shear strain for dry simulation and poro-mechanical coupling 
simulations under different loading rates. 
 

By comparing the plastic responses shown in Fig. 4, it is observed that two-way, 
hydro-mechanical coupling effect is more substantial when the prescribed loading 
rate is high. For instance, the equivalent plastic strain of the dry case and the coupled 
simulation with a 10-5 m/second loading rate are similar to each other. While a 
localized shear band still forms in the 10-3 m/second loading rate case, the specimen 
exhibits less equivalent plastic strain in the shear band zone, as shown in Fig. 4 (c). 
When loading rate reaches 10-1 m/second, the hydro-mechanical coupling effect is 
found to be sufficient to prevent the formation of shear band, as shown in Fig. 4 (d). 
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In the fastest loading rate case, 10-1 m/second, the pore fluid trapped at the middle of 
the specimen causes a significant pore pressure that prevents the formation of the 
shear band. More importantly, it clearly shows that fully saturated porous media 
under drained conditions may behave very differently than the dry solid skeleton if 
the loading rate is high.  

 
As demonstrated by the non-uniform plastic response in Fig. 4, local stress paths at different 

locations differ significantly. To this end, the relative stress paths obtained from the center and 
the right bottom corner of the specimen at various loading rates (locations of selected elements 

highlighted in  
 
 
 
 
 
 

	
Fig. 2) are reported in. At both locations, the effective stress response of the 

slowest loading rate (10-5 m/second) and the dry case coincide with each other. This 
similarity in stress path, and the small pore pressure are shown in Fig. 3 indicate that 
the hydro-mechanical coupling effect is weak at a slow loading rate. However, when 
the loading rate increases, more negative pore pressure is accumulated and thus 
pushes the specimen closer to the undrained limit, which ultimately leads to higher 
effective hydrostatic and deviatoric stress in the center of the specimen.  
 

         
  (a) center element       (b) corner element 

Fig. 5. Unconfined drained shear loading. Relative stress path in meridional 
stress space for structured fine mesh. The solid lines are the final yield surfaces, 
colored to match different loading rates. 
 
Mesh Sensitivity 
 

The fully coupled hydro-mechanical response is rate dependent due to the 
diffusion of pore fluid. This rate dependence might provide regularization on the 
numerical solutions as discussed previously in (Belytschko et al. 2000). Detailed 
studies by Zhang and Schrefler (2001) on dynamics of porous media reveals that the 
presence of pore fluid may alter the onset of bifurcation condition, and introduce 
length scale that strongly depends on permeability. 
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Fig. 6 compares the equivalent plastic strain accumulated from two uniform 

meshes. We observe that the plastic response of the shear band is sensitive to mesh 
refinement in the dry case, as shown Fig. 6 (b) and (d). In particular the plastic zone 
of the finite mesh accumulates significantly more equivalent plastic strain than the 
coarse mesh counterpart. While a similar discrepancy can still be observed in the fully 
saturated specimen, the difference on equivalent plastic strain is much smaller. To 
accurately analyze how pore-fluid diffusion affects the onset of strain localization, 
algorithms that detect a singularity in the acoustic tensor are required. This topic will 
be considered in future studies.  

 
  

                
   (a) fully saturated       (b) dry specimen 

                
   (c) fully saturated      (d) dry specimen 
Fig. 6. Unconfined drained shear loading. Equivalent plastic strain contours of 
fully saturated (left) and dry (right) specimens obtained from coarse and fine 
structured meshes at 10% global shear strain. 
 
CONCLUSIONS 
 

In this work, we examine the fully coupled hydro-mechanical response of water-
saturated limestone subjected to shear loadings with various rates. The cap-plasticity 
model is incorporated into a stabilized mixed finite element method to simulate the 
fully coupled deformation-diffusion process of collapsible porous media. We found 
that hydro-mechanical couplings may impose various degrees of influence on the 
mechanical responses, depending on the loading rate and geometry of the domain. In 
the case of shear failure of saturated porous medium, the local pore-fluid may prevent 
the formation of shear band.  
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